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Abstract. We generalize quantum teleportation to, what we call, statistical teleportation
utilizing previous results on distant preparation, and on the basic ingredient entities of an
entangled composite-system state vector. Our main result is ‘the central theorem’, establishing a
simple necessary and sufficient condition for the crucial entity: the event that the sender of a pure
quantum state has to measure in the first step of the two-step (and two-laboratory) teleportation
procedure. We derive numerous consequences especially for deterministic teleportation (a
special case of statistical teleportation), which is a direct generalization of the known quantum
teleportation. Detailed further generalization to proper and improper mixtures is investigated.
Finally, it is shown that extension to teleportation with nonlinear distant preparation is not
possible unless the idea of teleportation is essentially changed.

1. Introduction

Entangled composite-system state vectors are known to display nonclassical statistical
correlations between the subsystems (so-called nonseparability (D’Espagnat 1976)). A major
breakthrough in the physical understanding of nonseparability was made by Schrödinger
(1936) when he discovered distant preparation and when he obtained the first results on its
amazing scope.

Entanglement theory, also known as distant correlations theory, was further developed
in great detail and generality along the lines of Schrödinger’s approach by one of us (FH)
and Vujĭcić (1976) (Vujĭcić and Herbut 1984, 1988). It was done in the framework of
antilinear Hilbert–Schmidt operators (which have not found sufficient application in the
further literature on distant correlations) and distant measurement (which is not particularly
relevant for teleportation). For the readers’ convenience, most of the previous results on
distant correlations that we find relevant for teleportation are restated in this article in a
new and simplified way. Since they are rather elementary and not surprising, the proofs are
omitted.

In understanding entanglement, the recent discovery of teleportation by Bennettet al
(1993) seems to be one of the major events. It is receiving continued attention (e.g. Popescu
1994, Bennett 1995, Bennettet al 1996, Nielsen and Caves 1997, Moussa 1997 etc).

Investigating how wide the choice of the entities used in quantum teleportation is, i.e.
what features these entities should have in order to make quantum teleportation possible,
we find it appropriate to introduce the concept ofstatistical teleportation(see section 3).
It corresponds to a particular event that is measured as an observable in the first step. Its
occurrence (result 1) takes place with a probability, or, equivalently, in a subensemble. It
is also the basic building block of deterministic teleportation (see (9) below).
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Statistical teleportation is a two-step and two-laboratory phenomenon. The first step
takes place in the nearby laboratory in the way of a measurement that viadistant preparation
of a suitable state vector, and a classical message, brings about a change in the distant
laboratory. The second step consists of the application of a suitable unitary operation in the
distant laboratory converting the distantly prepared state vector into the teleported one.

Investigation of the first step of statistical teleportation is not only an application, but
also a further development of distant preparation theory: it is elaboration of the special case
when distant preparation is a linear map.

Some attempts at practical application of deterministic or perfect teleportation actually
fall back on statistical teleportation and achieve only a 25%, or at best a 50%, absolute
efficiency (Braunstein and Mann 1995). Hence, in applications, statistical teleportation can
be expected to play an important role both as a constituent of perfect, or of partially realized
or imperfect, teleportation or as an outright competitor to perfect teleportation.

In order to gain a balanced view about the potential importance of the concept of
statistical teleportation that is being proposed, one should also be aware of the fact that
recently, in the context of the notion of interaction-free measurement, the idea of statistical
measurement appeared in the literature (Elitzur and Vaidman 1993, Kwiatet al 1995, 1996).
Namely, in individual cases the measurement at issue may or may not succeed; it takes place
with a probability. Ensemblewise speaking, we have measurement in a subensemble, just
like the case with teleportation when it is statistical.

A summary of distant-preparation theory is presented in section 2. In section 3 the
concept of statistical teleportation is defined and its relation to deterministic teleportation
is clarified. A summary on the basic ingredients of a composite-system state vector is
given in section 4. The central result on statistical teleportation is derived in section 5.
Its immediate consequences are derived in section 6. Section 7 is devoted to a detailed
discussion of deterministic teleportation. Generalization to proper and improper mixtures
is performed in sections 8 and 9 respectively. Finally, concluding remarks are given in
section 10.

Since we shall be dealing with entities containing redundancies, we shall extract the
relevant parts (relevant entities) from them. Whenever possible we utilize a simpler notation
(and simpler term) for the relevant entity. In particular, the redundant entities will be denoted
with bars, and the relevant ones without them.

2. Partial scalar product and distant preparation

In this section we restate some relevant basic results on distant preparation developed in
the previously mentioned articles.

Distant preparation requires an entangled state vector of a composite system consisting
of two subsystems. It comes about when one chooses one of the subsystems to perform
direct subsystem measurement on it. We call the directly measured subsystem the nearby
one, and we denote it by ‘n’. In distant preparation one studies the consequences of the
direct subsystem measurement on the state of the other subsystem. We call the latter the
distant subsystem and we denote it by ‘d ’.

To obtain the mentioned consequences, it is important that, during the direct
measurement on the nearby subsystem, neither the measuring apparatus nor this subsystem
must interact with the distant subsystem. The latter changes its quantum-mechanical state
due to the very procedure described, and this is calleddistant preparation. Most often the
subsystems are far apart or distant from each other so that the direct subsystem measurement
on the nearby subsystem can be easily performed without influencing dynamically the state
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of the distant subsystem.
We denote the state spaces (Hilbert spaces) of the nearby and the distant subsystems by

Hn andHd respectively.

Lemma 1.Let |χ〉nd (∈ (Hn ⊗ Hd)) and |φ〉n (∈ Hn) be two nonzero vectors. Let
|χ〉nd =

∑I
i=1 αi |i〉n|i〉d (‘I ’ finite or ∞, ∀i : αi ∈ C) be an expansion of|χ〉nd in terms

of uncorrelated vectors. Then the vector
I∑
i=1

(αi〈φ|n|i〉n)|i〉d

whereby(〈φ|n|i〉n) we denote the number obtained by ordinary scalar multiplication inHn,
is an element ofHd , and it is one and the same whatever the mentioned expansion of|χ〉nd
in uncorrelated vectors.

Definition 1. The so-calledpartial scalar product, denoted by〈φ|n|χ〉nd and belonging to
Hd , is evaluated by expanding|χ〉nd in terms of uncorrelated vectors in an arbitrary way
(cf lemma 1), and by using the ordinary scalar product inHn. If we have, for example
|χ〉nd =

∑I
i=1 αi |i〉n|i〉d , then, by definition,

〈φ|n|χ〉nd ≡
I∑
i=1

(αi〈φ|n|i〉n)|i〉d . (1)

Corollary 1. One has

〈λ|d(〈φ|n|χ〉nd) = (〈φ|n〈λ|d)|χ〉nd .
(Note that the LHS is a scalar product inHd , and the RHS is one in(Hn ⊗Hd).)
Corollary 2. Partial scalar multiplication is continuous and linear in the composite-system
vector.

Corollary 3. If An is a bounded Hermitian operator inHn, then we have the following
equality of partial scalar products

〈φ|n((An ⊗ Id)|χ〉nd) = (〈φ|nAn)|χ〉nd
whereId is the identity operator inHd .

Corollary 4. If Ad is a bounded linear operator inHd , then

Ad(〈φ|n|χ〉nd) = 〈φ|n((In ⊗ Ad)|χ〉nd)
always, whereIn is the identity operator inHn.
Corollary 5. Let |φ〉n ∈ Hn, 〈φ|n|φ〉n = 1. Then

(|φ〉n〈φ|n ⊗ Id)|χ〉nd = |φ〉n ⊗ (〈φ|n|χ〉nd). (2)

In this outline we deal withdistant preparationunder two restrictions. We assume that
the composite system is in a pure state, described by a state vector|χ〉nd for example and
that it is an elementary event (or atom),|φ〉n〈φ|n for example, that occurs or not on the
nearby subsystem.

If the observable (projector)|φ〉n〈φ|n (or (|φ〉n〈φ|n⊗Id)) is measured and if one obtains
1 as the result of the measurement, then, one speaks of theoccurrence of the eventat issue
(see Gudder 1979). The result 0 is referred to as nonoccurrence.

Switching over from the more usual individual-system language to the (equivalent)
ensemble one, one can say that after the measurement of(|φ〉n〈φ|n⊗ Id) in |χ〉nd we leave
out all those distant subsystems on the nearby partners of which|φ〉n〈φ|n has not occurred.
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The remaining subensemble of distant subsystems, on the nearby partners of which|φ〉n〈φ|n
has occurred, is, by definition,the distantly prepared subensemble(or state).

The fraction of distant subsystems that goes into the distantly prepared subensemble is
obviously equal to the probability of the occurrence of(|φ〉n〈φ|n ⊗ Id) in |χ〉nd .

The distantly prepared state can be easily evaluated if one confines oneself to ideal
measurement. However, before we state this result, we introduce the concept and evaluation
of the state operator of a subsystem.

Definition 2. If a composite system is in the state given by the state vector|χ〉nd , then the
state of the distant subsystem is given by the reduced statistical operator (state operator)

ρd ≡ Trn |χ〉nd〈χ |nd ≡
∑
i

(〈φi |n|χ〉nd)(〈χ |nd |φi〉n) (3)

where Trn denotes the partial trace inHn, and{|φi〉n : ∀i} is a complete orthonormal (ON)
basis inHn. The definition and evaluation of the nearby-subsystem stateρn is symmetrical
to (3) with respect to interchange ofn andd.

Taking the matrix representation ofρd in a complete ON basis inHd , the RHS of (3)
is, due to corollary 1, seen to reduce to the usual definition of the partial trace, which is
known to be independent both of the choice of the basis{|φi〉n : ∀i} in Hn (cf (3)) and the
mentioned basis inHd .

Corollary 6. For any bounded Hermitian operatorsAd andBd one has

Ad [Trn(|χ〉nd〈χ |nd)]Bd = Trn[(In ⊗ Ad)(|χ〉nd〈χ |nd)(In ⊗ Bd)].
And symmetrically, for any bounded Hermitian operatorsAn andBn:

An[Trd(|χ〉nd〈χ |nd)]Bn = Trd [(An ⊗ Id)(|χ〉nd〈χ |nd)(Bn ⊗ Id)].
Proposition 1 (distant preparation by ideal subsystem measurement).Let |φ〉n (∈ Hn) and
|χ〉nd (∈ (Hn ⊗Hd)) be state vectors, and let us write

〈φ|n|χ〉nd = w1/2|ω〉d (4)

wherew is by definition the square of the norm of the vector on the LHS. If the event
(|φ〉n〈φ|n ⊗ Id) occurs in ideal nearby-subsystem measurement in the state|χ〉nd of the
composite system, then the probability of the occurrence isw, and the distantly prepared
state vector is|ω〉d .

Proof. The required probabilityp is, as well known,

p = 〈χ |nd(|φ〉n〈φ|n ⊗ Id)|χ〉nd
which, utilizing idempotency and (2) twice, gives

p = ‖〈φ|n|χ〉nd‖2 = w
as claimed.

Since in ideal measurement the change of state due to occurrence is described by the
Lüders formula (Messiah 1961, Lüders 1951), the occurrence of(|φ〉n〈φ|n ⊗ Id) in |χ〉nd
changes this composite-system state vector into the state vector

|χ̄〉nd ≡ w−1/2(|φ〉n〈φ|n ⊗ Id)|χ〉nd .
The distant subsystem is, then, described by the reduced statistical operator (cf (3))

ρ̄d ≡ Trn |χ̄〉nd〈χ̄ |nd
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which, after substitution of the preceding relation, using (2), and finally of (4), becomes

ρ̄d = Trn(|φ〉n〈φ|n ⊗ |ω〉d〈ω|d) = |ω〉d〈ω|d
as claimed. �

As is well known, three requirements are relevant for individual-system measurements.
(i) In each measurement a result (characteristic value) is obtained, and their relative
frequencies, in the limit of infinitely many measurements, reproduce the probability values
predicted by quantum mechanics. (ii) The results are repeatable, i.e. an immediately
repeated measurement of the same observable on the same individual system gives the
same result with certainty. (iii) Possible results on compatible observables are preserved in
each individual-system measurement.

If all three requirements are satisfied, we have ideal measurement (cf Herbut 1974,
theorem 1). If the third is not, but the first two are, then we are dealing with nonideal
first-kind or repeatable measurements (Pauli 1933, Buschet al 1991). Finally, if only
requirement (i) is valid, one has second-kind or nonrepeatable measurement (ibid).

If one has in mind nonideal first-kind or second-kind measurement, then the probability
is the same as in ideal measurement because it does not depend on the kind of measurement
performed. But, one wonders if a similar statement is true about the distantly prepared
subensemble: is it still describable by a state operator? If yes, can this be evaluated? An
answer to the latter question may be burdened by the fact that there is no change-of-state
formula in nonideal measurement.

Our chance lies in the fact that the concept of ‘state’ serves to provide us with
probabilities, and it is determined by the totality of the latter. Hence, we have to convert
our change-of-state problem into the language of mere probabilities.

In an attempt to generalize distant preparation from ideal toany kind of individual-system
measurement, it seems reasonable to base our further considerations on the followingtwo
physical assumptions.

(i) The probability of occurrence of two compatible events in immediate succession
(i.e. when the time interval between the occurrences tends to zero) equals the probability of
coincidence, i.e. of joint measurement of the two compatible events. And this is valid for
any kind of measurement.

(ii) If |λ〉d is an arbitrary state vector inHd , there exists a probabilityp(λ) for the
occurrence of|λ〉d〈λ|d in the distantly prepared state by any measurement. (This probability
is conditional by the very definition of the distantly prepared state.)

Now, we can prove the basic relevant result of this section.

Theorem 1.Let |φ〉n and|χ〉nd be state vectors. We assume that in an arbitrary measurement
of the event(|φ〉n〈φ|n ⊗ Id) in the state|χ〉nd the occurrence has a positive probabilityw.
The occurrence bringsipso facto the distant subsystem into the state|ω〉d defined by (4).
Besides, also the probabilityw is given by (4) (just like in ideal measurement).

Proof. We apply the above two assumptions to the immediate succession of the events
(|φ〉n〈φ|n ⊗ Id) and(In ⊗ |λ〉d〈λ|d) in the state|χ〉nd :

wp(λ) = 〈χ |nd(|φ〉n〈φ|n ⊗ |λ〉d〈λ|d)|χnd〉. (5)

(Note that on the LHS we have the usual conditional-probability factorization.)
The probabilityp(λ) is determined by the rest of the entities in (5), and all these,

being probabilities, are independent of the kind of measurement. Hence, the probability
p(λ) is in any measurement the same as in ideal measurement. In the latter we know (see
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proposition 1) thatp(λ) = |〈ω|d |λ〉d |2, i.e. that the distantly prepared state is described by
ρd = |ω〉d〈ω|d (cf (4)). Hence, this is true for all measurements. �

We have thus been able to generalize the physical meaning of|ω〉d defined in (4) from
ideal to any kind of measurement on account of the above physical assumptions. Bell
and Nauenberg (1966) have made assumption (i), but only for ideal measurement (on a
noncomposite system), and they have derived the Lüders formula (Messiah 1961, Lüders
1951). We have extended their assumption to all kinds of measurement. This seems justified
because probabilities in quantum mechanics do not depend on the kind of measurement
performed.

3. Definition of statistical teleportation

The investigation that follows will be based on relation (4) evaluating the distantly prepared
state vector. Let us introduce the concepts required for a definition of statistical teleportation.

The system on which quantum teleportation takes place consists of three subsystems.
We denote them by 1, 2, and 3. There are two laboratories. The experimenter in the nearby
one, who is the sender of a quantum-state vector, has the nearby subsystem (1+ 2) at his
disposal, whereas the experimenter in the distant laboratory, who is the receiver, is able to
act on the state of the distant subsystem 3.

The most important entity for teleportation is a given entangled state vector|9̄〉23

of the composite system (2+ 3). It plays the role of a sort of a bridge or a specific
quantum information channel because, as stated, subsystem 2 is in the nearby laboratory,
and subsystem 3 is in the distant one. We call|9̄〉23 the bridge state vector.

In the nearby laboratory one measures a suitable observable, an elementary event
(synonym: an atom)|ā〉12〈ā|12, which is determined by a state vector|ā〉12 that we call
the atomic state vector. This measurement is actually performed in the three-subsystem
composite-system state described by|ψ〉1|9̄〉23, where|ψ〉1 is a state vector for subsystem 1
that is to be teleported. As a consequence of the occurrence of the event(|ā〉12〈ā|12⊗ I3)

in its measurement (I3 being the identity operator inH3), that occurs with some positive
probabilityw̄, a distantly prepared state|ψ〉′3 appears in the distant laboratory. It is evaluated
by taking the partial scalar product

〈ā|12|ψ〉1|9̄〉23 = (w̄)1/2|ψ〉′3 (6a)

(see proposition 1 and theorem 1).
The experimenter in the distant laboratory has an operationŪ3 at his disposal, which is

suitably chosen for (or associated with) the atomic state vector|ā〉12. If the crucial event
(|ā〉12〈ā|12 ⊗ I3) does occur, a classical message (a phone call, for example) goes from
the nearby laboratory to the distant one. Then in the latter the mentioned operationŪ3 is
applied to the distantly prepared state|ψ〉′3, and it is thus converted into the teleported state
|ψ〉3.

More precisely, letS1 be some linear manifold of first-subsystem states. Then, for each
|ψ〉1 ∈ S1,

|ψ〉3 = Ī31|ψ〉1 (7)

where ‘Ī31’ is the well known unitary isomorphism mappingH1 onto H3 and giving
physically the samestate, or it is some other fixed isomorphism ofH1 ontoH3. (If the
latter is the case, then we have some kind of generalized teleportation, but the theory is
formally the same). IfĪ31 is the ‘same-state’ isomorphism, then subsystems 1 and 3 have
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to be of the same physical nature, of course. IfĪ31 is more general,H1 andH3 have to be
only isomorphic. We denote by ‘I31’ the map obtained by restricting the domain ofĪ31 to
S1.

One can make the following summary.

Definition 3. We call a two-step procedure in two distantly separated laboratories that is
performed with the purpose to transmit an arbitrary state vector|ψ〉1 from some linear
manifold S1 in H1 into the physically identical (or isomorphic) state vector|ψ〉3 in H3

statistical teleportationif the following requirements are satisfied:
(i) The first step is distant preparation, we denote it byU31, taking state vectors from

S1 into state vectors inH3. It is performed in the nearby laboratory by measuring a
suitable observable, an event of the form(|ā〉12〈ā|12⊗ I3), |ā〉12 ∈ (H1⊗H2), in the state
|9〉1|9̄〉23, where|9̄〉23 is a given entangled state vector in(H2⊗H3), shared between the
two laboratories (subsystem 2 being in the nearby laboratory and subsystem 3 in the distant
laboratory). The suitable chosen state vector|ā〉12 is called atomic.

(ii) Information about occurrence or nonoccurrence of the mentioned event is transmitted
by a classical channel from the nearby to the distant laboratory. In case of occurrence, the
second step of teleportation, a unitary operation inH3, transforms the distantly prepared
state of subsystem 3 into the physically identical (or isomorphic) teleported state vector.

We denote the linear manifold spanned by the range ofU31, i.e. U31(S1) by S′3, the
restriction of operationŪ3 to S3 by U3, and, finally, the linear manifoldU3(S

′
3) by S3.

The two-step and two-laboratory procedure at issue is described by the following chain
of operations

I31 = U3 ◦ U31 (8)

where ‘◦’ denotes ‘after’ reading from left to right, as displayed on the commuting figure 1.
(So far (8) is confined to state vectors inS1.)

The term ‘statistical teleportation’ is suggested having an individual (1+2+3) composite
system in mind. One may also use the synonym ‘teleportation with a probability’. If one
envisages an ensemble of (1+ 2 + 3) systems of the kind described, one may use the
synonym ‘teleportation in a subensemble’.

We now require U3 to be linear, which, in view of the fact that it preserves the norm,
is equivalent to requiringU3 to be a unitary isomorphism mappingS′3 ontoS3. On account
of relation (8), alsoU31 is then linear and hence a unitary isomorphism takingS1 ontoS′3.
(This is where elaboration of distant preparationU31 comes into play.)

The above requirement of linearity ofU3 (and ofU31) is crucial for our theory. At the
end of this article (cf section 10.1) this requirement is investigated, and it is proved that it
is a necessary consequence of some very basic assumptions.

Figure 1.
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Evidently, the distant experimenter must interact very nontrivially with subsystem 3
to bring about the action ofU3. This interaction, whatever its form, is a part of the
spontaneous evolution of the distant laboratory. Unitary evolution is confined, as well
known, to dynamically isolated systems, and subsystem 3 is not at all isolated.

A way out of this apparent paradox lies in the fact that the instruments with which
the distant experimenter acts on subsystem 3 are macroscopic bodies. Thus, they are
tremendously large compared to subsystem 3, which is thought of as a microscopic system.
Hence, the feedback (or reaction) on the instruments can be neglected in a very good
approximation. This makes subsystem 3 ‘move in an external potential’.

We have seen that statistical teleportation is an intricate process that has distant
preparation at its heart.Deterministic(or perfect)teleportation, invented by Bennettet al
(1993), is slightly more complex than statistical teleportation, and the latter is the essential
ingredient of the former.

Namely, one has a complete observable inH12 (i.e. one with all characteristic values
nondegenerate) all characteristic vectors of which are atomic state vectors:

A12 ≡
M∑
m=1

am|ā(m)〉12〈ā(m)|12 (m 6= m′ ⇒ am 6= am′) (9)

whereM ≡ dim(H1)× dim(H2).
The distant experimenter has an operationŪ (m)3 associated with each of the atomic

state vectors|ā(m)〉12 at his disposal. After the measurement of(A12 ⊗ I3) in the state
|ψ〉1|9̄〉23 a ‘phone call’ informs the distant experimenter which resultam has occurred. He
applies the corresponding operationŪ (m)3 , and thus he necessarily obtains one and the same
teleported state|ψ〉3 (≡ I31|ψ〉1) whatever the classical message. This is why we speak
of ‘deterministic’ teleportation, or teleportation with certainty, in this case. (The ensemble
point of view is unnecessary here.)

It is our first aim to find all atomic state vectors|ā〉12, i.e. state vectors which make
statistical teleportation possible when a bridge state vector|9̄〉23 and a linear manifold
S′1(⊆ H1) are given. The operationU3 is, then, determined byU31 (cf (8)), which is, in
turn, determined by|ā〉12 via (6a), rewritten as

U31|ψ〉1 = |ψ〉′3. (6b)

But before we proceed with our theory of statistical teleportation, we expound further
the ‘tools’ of distant preparation theory because we need a precise statement on the scope
of distant preparation (to see how wide the linear manifoldS3 can turn out to be).

4. The basic ingredient entities of a composite-system state vector

In this section we restate the relevant part of a distant correlations theory from previous
work (Herbut and Vujĭcić 1976, Vujĭcić and Herbut 1984 and 1988). We resume the notation
of section 2 calling the two subsystems the ‘nearby’ and the ‘distant’ one.

The subsystem state operators and the correlation operator, the basic ingredient entities
of a composite-system state vector|χ〉nd (∈ (Hn ⊗ Hd)), are the tools in terms of which
our theory of teleportation is going to be developed.

Lemma 2.Let |χ〉nd be a composite-system state vector, and{|φk〉n : ∀k} a complete ON
basis inHn. Then the following claims are valid.

(i) There exists a set of vectors{|ω′k〉d : ∀k} (⊆ Hd) such that

|χ〉nd =
∑
k

|φk〉n|ω′k〉d . (10a)
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(ii) The vectors|ω′k〉d , called generalized expansion coefficients, are unique and each
depends only on the corresponding subsystem basis vector|φk〉n and on|χ〉nd .

(iii) The generalized expansion coefficients can be evaluated as partial scalar products:

∀k : |ω′k〉d = 〈φk|n|χ〉nd . (10b)

The subsystem state operators (reduced statistical operators)ρn and ρd of a given
composite-system state vector|χ〉nd were defined in definition 2.

Lemma 3.A generalized expansion coefficient|ω′k〉d in (10a) is zero if and only if the
corresponding vector|φk〉n belongs to the null space ofρn. Equivalently, one has an
expansion in a subsystem ON subbasis{|φk〉n : ∀k} of the form (10a) if and only if the
subspace spanned by this subbasis contains the range ofρn.

Corollary 7. If a subsystem ON subbasis{|φk〉n : ∀k} such that|χ〉nd can be expanded in
it (cf lemma 3) is given, and in the corresponding generalized expansion coefficients|ω′k〉d
in (10a) the norms ‘w1/2

k ’ are explicitly displayed

∀k : |ω′k〉d ≡ w1/2
k |ωk〉d (11a)

then one has the following (mathematical) decomposition of the state operatorρd of the
distant subsystem into pure states:

ρd =
∑
k

wk|ωk〉d〈ωk|d . (11b)

From the physical point of view, decomposition (11b) is a potential, not an actual, one
because, taking the ensemble point of view,ρd cannot be actually thought of as decomposed
into distinct subensembles (corresponding to the terms in (11b)) in view of the homogeneity
of the ensemble|χ〉nd〈χ |nd of composite systems. But the (nonselective) measurement of
a complete nearby-subsystem observable

(Bn ⊗ Id) =
∑
k

bk(|φk〉n〈φk|n ⊗ Id) k 6= k′ ⇒ bk 6= bk′

(the |φk〉n same as in lemma 3) in the state|χ〉nd brings about (11b) as an actual
decomposition. This is an immediate consequence of theorem 1. It is calleddistant
state operator decomposition(or empirically: distant ensemble decomposition). It is the
nonselective counterpart of distant preparation. (The latter is a notion connected with the
selective measurement of one characteristic valuebk of (Bn ⊗ Id).)
Lemma 4.Expansion (10a) in a subsystem ON subbasis is biorthogonal, i.e. also the set
{|ω′k〉d : ∀k} of the generalized expansion coefficients is a set of orthogonal vectors, if and
only if {|φk〉n : ∀k} is a characteristic subbasis ofρn.

Definition 4. If one writes a biorthogonal expansion of|χ〉nd in terms of ON subbases
{|φi〉n : ∀i} and{|ωi〉d : ∀i} for the two subsystems

|χ〉nd =
∑
i

r
1/2
i |φi〉n|ωi〉d (12)

with positive r1/2
i , then one says that aSchmidt biorthogonal expansionof |χ〉nd is given.

The vectors(r1/2
i |ωi〉d) are the generalized expansion coefficients in (10a), and r1/2

i are
their norms (cf (11a)).

It is obvious from lemma 4 and definition 4 that every composite-system state vector
|χ〉nd can be written as a Schmidt biorthogonal expansion, and that the latter is, in general,
not unique as far as the basis vectors are concerned.
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Corollary 8. If a Schmidt biorthogonal expansion (12) is given, one can read off spectral
forms of ρn andρd . They are given by the relations:

ρn =
∑
i

ri |φi〉n〈φi |n ∀i : ri > 0 (13a)

ρd =
∑
i

ri |ωi〉d〈ωi |d ∀i : ri > 0. (13b)

(Notice that the positive characteristic values ofρn andρd necessarily coincide.)

Remark 1.In view of (13a) ((13b)), one can see that the linear manifold spanned by the
ON subbasis{|φi〉n : ∀i} (by {|ωi〉d : ∀i}) in the Schmidt biorthogonal expansion (12) is the
range R(ρn) (R(ρd)). The subspace spanned by the same subbasis is the (topologically)
closed rangeR̄(ρn) (R̄(ρd)). If the subbasis is infinite, the range is a proper subset of the
closed range. Otherwise, they coincide.

Definition 5. Let |χ〉nd be given as a Schmidt biorthogonal expansion (12). Let us denote
by Ua and call the correlation operator (implied by|χ〉nd ) the antiunitary (antilinear unitary)
isomorphism mappinḡR(ρn) onto R̄(ρd) so that

∀i : Ua|φi〉n = |ωi〉d . (14a)

Remark 2.Definition (14a) is evidently equivalent to

Ua =
∑
i

|ωi〉dK〈φi |n (14b)

where ‘K ’ is the operation of complex conjugation. Thus,

∀|λ〉n (∈ R̄(ρn)): Ua|λ〉n =
∑
i

(〈φi |n|λ〉n)∗|ωi〉d .

Lemma 5.Though a Schmidt biorthogonal expansion (12) of a given composite-system state
vector|χ〉nd is not unique (the characteristic subbases displayed in it are not unique, though
the spectra of the subsystem state operators always are), the correlation operatorUa is always
uniquely implied by |χ〉nd .

Remark 3.Evidently, one can rewrite (12) in any of the following two forms:

|χ〉nd =
∑
i

r
1/2
i |φi〉n(Ua|φi〉n)d (15a)

|χ〉nd =
∑
i

r
1/2
i (U−1

a |ωi〉d)n|ωi〉d . (15b)

Corollary 9. A given |χ〉nd implies itsρn, ρd , andUa. But also vice versa,ρn, andUa, or,
alternatively,ρd andU−1

a , determine|χ〉nd .

Corollary 10. If Qn and Qd are therange projectorsof the respective subsystem state
operatorsρn andρd of a given|χ〉nd , then always

|χ〉nd = (Qn ⊗ Id)|χ〉nd = (In ⊗Qd)|χ〉nd .
Definition 6. We call the numberN of terms in the Schmidt canonical form (12) of a given
|χ〉nd , or equivalently, the number of dimensions of the (necessarily equally dimensional)
rangesR(ρp), p = n, d, the degree of entanglementin |χ〉nd . If N is finite, we say that
|χ〉nd is finitely entangled; otherwise, we speak of infinite entanglement.

Definition 7. If a given composite-system state vector|χ〉nd is finitely entangled with the
degreeN , and if ∀i : ri = 1/N (cf (12)), then one says that the vector ismaximally
entangled.
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Definition 8. Let Sn be a subspace ofHn and letQn be the range projector ofρn of a
given composite-system state vector|χ〉nd (cf (12) and (13a)). If R(Qn) ⊆ Sn, then we
say that|χ〉nd is within Sn. If, in particular,R(Qn) = Sn, then|χ〉nd is said to becomplete
in Sn. (If R(Qn) ⊂ Sn, then the vector is incomplete inSn). These definitions are valid
symmetrically for the distant subsystem.

Remark 4.Every state vector|χ〉nd is complete in the closed rangesR̄(ρn) (= R(Qn)) and
R̄(ρd) (= R(Qd)), whereQn andQd are the respective range projectors ofρn andρd .

In the main result of this section, the square root of the subsystem state operatorρ
1/2
d

is going to play a decisive role. It is desirable to gain some knowledge on it.

Remark 5.In case of infinite entanglement, the spectral form (13b) implies, as easily seen:

R(ρd) = {|λ〉d : |λ〉d ∈ Hd ,
∑
i

(|ωi |d |λ〉d |2/r2
i ) <∞} (16)

R(ρ
1/2
d ) = {|λ〉d : |λ〉d ∈ Hd ,

∑
i

(|〈ωi |d |λ〉d |2/ri) <∞}. (17)

In Hn one has the symmetric relations.

Remark 6.If |χ〉nd is infinitely entangled, then we have the following chain of ranges as
proper subsets:

R(ρd) ⊂ R(ρ1/2
d ) ⊂ R(Qd) (R(Qd) = R̄(ρd) = R̄(ρ1/2

d ))

whereas, if the entanglement is finite, then all three linear manifolds coincide. Naturally,
in Hn we have the symmetric relations.

Theorem 2.If a composite-system state vector|χ〉nd is given, then a state vector|λ〉d can be
obtained by distant preparation (cf proposition 1 and theorem 1) if and only if|λ〉d ∈ R(ρ1/2

d ).

Proof. As it is clear from proposition 1 and theorem 1, the (unnormalized) vector|λ〉′d is
obtainable by distant preparation if and only if there exists a state vector|φ〉n such that

〈φ|n|χ〉nd = |λ〉′d . (18)

Replacing here (12), one obtains that the characteristic condition is existence of a|φ〉n that
satisfies

|λ〉′d =
∑
i

〈φ|n|φi〉nr1/2
i |ωi〉d . (19)

To prove thenecessityof the claimed condition, let us assume that there exists a|φ〉n
satisfying (19). Its very existence makes(

∑
i |〈φi |n|φ〉n|2) < ∞ necessary. Further,

(19) entails〈φ|n|φi〉n = 〈ωi |d |λ〉′2d /r1/2
i . Substitution in the preceding inequality gives

[
∑

i (|〈ωi |d |λ〉′d |2/ri)] <∞. On account of (17) this implies

|λ〉′d ∈ R(ρ1/2
d ). (20)

To provesufficiency, we assume the validity of the claimed condition (20). Then, owing
to (17), we can define

|φ〉n ≡
∑
i

(〈λ|′d |ωi〉d/r1/2
i )|φi〉n

and, on account of (19), it determines by distant preparation the given|λ〉′d . �

This result was derived in previous work (Herbut and Vujic̆ić 1976) using antilinear
Hilbert–Schmidt operator techniques. Therefore, the above proof may be viewed as a
simplified one.
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5. The central theorem on statistical teleportation

As it was stated, in the first step of statistical teleportation one measures(|ā〉12〈ā|12⊗ I3)

in the state|ψ〉1|9̄〉23. The nearby subsystem is(1+ 2), and the distant one 3. Owing to
theorem 2, we know that the distantly prepared state|ψ〉′3 (cf the figure) necessarily belongs
to the linear manifoldR((ρ̄B3 )

1/2), where

ρ̄B3 ≡ Tr12(|ψ〉1|9̄〉23〈ψ |1〈9̄|23) = Tr2(|9̄〉23〈9̄|23). (21)

As it was stated, under the assumption that a bridge state vector|9̄〉12 is given, we search
for a state vector|ā〉12 such that it makes possible the first step of statistical teleportation,
i.e. distant preparation as a unitary mapU31 of S1 onto S′3. The second step is then, in
principle, defined as obvious from the figure:

U3 = I31 ◦ U−1
31 .

We now fix arbitrarily S1 as a linear submanifold ofH1 with finite or infinite
dimensionality. We introduce the corresponding projectorP1 projecting onto the subspace
S̄1 (topological closure ofS1).

Further, we define the linear submanifoldS′3 of H3 as the one spanned by all distantly
prepared state vectors|9〉′3 obtained from some vector|ψ〉1 ∈ S1, and we denote byP ′3 the
projector projectingH3 onto S̄′3.

Definition 9. Let the relevant bridge state vector|9〉23 be defined by

|9〉23 ≡ c−1/2(I2⊗ P ′3)|9̄〉23 (22)

wherec is the square norm of the projection. The range projector of the state operator of
the second subsystem in the relevant bridge state vector, i.e. of

ρB2 ≡ Tr3 |9〉23〈9|23 (23)

will be denoted byP2.
To make sure that definition (22) is consistent, we must ascertain of the following fact.

Lemma 6.The projection(I2⊗ P ′3)|9̄〉23 is never zero.

Proof. Assumingab contrario that the projection is zero, and utilizing (21), we obtain

0= Tr2(I2⊗ P ′3)|9̄〉23〈9̄|23(I2⊗ P ′3) = P ′3ρ̄B3 P ′3.
(We have ‘pulled out’P ′3 from Tr2 (cf corollary 6)). Theorem 2 and the definition ofS′3
imply R(P ′3) ⊆ R[(ρ̄B3 )

1/2]. Hence, ifP ′3|φ〉3 = |φ〉3, then, on the one hand, [(ρ̄B3 )
1/2] acts

on |φ〉3 as a nonsingular operator, and, on the other hand, the above relation implies

0= 〈φ|3(P ′3ρ̄B3 P ′3)|φ〉3 = ‖((ρ̄B3 )1/2|φ〉3‖2

and, further,(ρ̄B3 )
1/2|φ〉3 = 0 in contradiction with the above. This completes ourreductio

ad absurdumproof. �

Definition 10.We call the state vector|a〉12 defined by

|a >12≡ d−1/2(P1⊗ P2)|ā〉12 (24)

whered is the square norm of the projection,the relevant atom state vector.

Lemma 7.The basic distant-preparation expression can be reduced to an analogous
expression in terms of the relevant state vectors:

∀|ψ〉1 ∈ S1 : 〈ā|12(|ψ〉1|9̄〉23) = c1/2d1/2〈a|12(|ψ〉1|9〉23). (25)
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Proof. Utilizing first the fact that, by definition ofS′3, all distantly prepared vectors belong
to it, then corollary 4, then (22), then|ψ〉1 ∈ S1 and the definition ofP2 together with
corollary 10, then corollary 3, and finally (24), one can write:

LHS= P ′3〈ā|12(|ψ〉1|9̄〉23) = 〈ā|12{|ψ〉1[(I2⊗ P ′3)|9̄〉23)]}
= c1/2〈ā|12(|ψ〉1|9〉23) = c1/2〈ā|12[(P1|ψ〉1)(P2⊗ I3)|9〉23]

= c1/2[〈ā|12(P1⊗ P2)](|ψ〉1|9〉23) = RHS.

�

Proposition 2.If the measurement of the event(|ā〉12〈ā|12⊗I3) in the state|ψ〉1|9̄〉23 gives
(by distant preparation) the state vector|ψ〉′3 with probability w̄, then the same state vector
|ψ〉′3 can be obtained with a probabilityw measuring the event(|a〉12〈a|12⊗ I3) in the state
|ψ〉1|9〉23, where|a〉12 is the relevant atom state vector of|ā〉12 (cf (24)), and|9〉23 is the
relevant bridge state vector (cf (22)). Besides, one has the relation:

w̄ = wcd. (26)

Proof. Let us use the basic distant preparation formula (4) as the first step of teleportation
in the two versions at issue:

〈ā|12(|ψ〉1|9̄〉23) ≡ (w̄)1/2|ψ̄〉′3 (27a)

〈a|12(|ψ〉1|9〉23) = w1/2|ψ〉′3. (27b)

As an immediate consequence of lemma 7, one can write

|ψ̄〉′3 = (w̄)−1/2c1/2d1/2〈a|12(|ψ〉1|9〉23) = (w̄)−1/2c1/2d1/2w1/2|ψ〉′3.
Since we are dealing with state vectors and positive numbers, the claims|ψ̄〉′3 = |ψ〉′3 and
(26) follows. �

Remark 7.The distant-preparation relation (27a) is connected with the actual measurement
(in the laboratory) of the event(|ā〉12〈ā|12⊗ I3) in the state|ψ〉1|9̄〉23, i.e. with the first
step of actual teleportation. Relation (27b), on the other hand, corresponds tovirtual
measurement of(|a〉12〈a|12⊗ I3) in the state|ψ〉1|9〉23. We call it ‘virtual’ because it is
not actually performed, but it is conceivable.

We proceed in our search for atomic state vectors|ā〉12 that will give teleportation.
Further on, we utilize (27b) and virtual measurement, and we concentrate on its interpretation
as a linear mapU31.

Lemma 8.The relevant distant preparation relation (27b) amounts to a linear mapU31 taking
S1 into S′3 (cf (6b)) if and only if the probabilityw is one and the same positive number
for all state vectors|ψ〉1 ∈ S1.

Proof. For |ψ〉1, |φ〉1, |ω〉1∈S1, 〈ψ |1|ψ〉1 = 〈φ|1|φ〉1 = 〈ω|1|ω〉1 = 1, and |ω〉1 =
α|ψ〉1+ β|φ〉1, α, β ∈ C, one can write

〈a|12(|ψ〉1|9〉23) = w1/2|ψ〉′3 (28a)

〈a|12(|φ〉1|9〉23) = x1/2|φ〉′3 〈a|(|ω〉|9〉) = y1/2|ω〉′ (28b)

and

α〈a|12(|ψ〉1|9〉23)+ β〈a|12(|φ〉1|9〉23) = y1/2|ω〉′3. (29)
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Sufficiency. We assumew1/2 = x1/2 = y1/2 > 0. Substituting on the LHS of (29) the
equalities (28a), (28b), after cancellation one has

|ω〉′3 = α|ψ〉′3+ β|φ〉′3 (30)

as claimed.

Necessity.Let (30) be valid by assumption. Replacing (28a), (28b) and (30) in (29) one
obtains

αw1/2|ψ〉′3+ βx1/2|φ〉′3 = αy1/2|ψ〉′3+ βy1/2|φ〉′3.
If |ψ〉′3 and|φ〉′3 are linearly independent, then the uniqueness of the expansion coefficients,
and the specificationα 6= 0 6= β imply w = x = y. If we takeα 6= 0= β (or α = 0 6= β),
then|ω〉′3, and|ψ〉′3 (or |φ〉′3) are collinear, and it is clear from the distant-preparation relation
(say (28a)) that the probability is the same. The positivityw > 0 is necessary, because
otherwiseU31 would mapS1 into zero. �

We still do not know what kind of atomic state vector|ā〉12 will give constantw over
S1 in the relevant distant-preparation relation (27b). For further investigation, the Schmidt
biorthogonal expansion (cf (12)) of the relevant bridge state vector|9〉23 is desirable. Let
it be

|9〉23 =
∑
i

r
1/2
i |i〉2|i〉3. (31a)

It is accompanied by the spectral forms of the subsystem state operators

ρB2 =
∑
i

ri |i〉2〈i|2 (31b)

ρB3 ≡ Tr2 |9〉23〈9|23 =
∑
i

ri |i〉3〈i|3 (31c)

∀i : ri > 0 (cf (23) and (13a), (13b) mutatis mutandis).

Lemma 9.The relevant distant preparation relation (27b), i.e.

〈a|12(|ψ〉1|9〉23) = w1/2|ψ〉′3 (32)

amounts to a unitary map|ψ〉′3 = U31|ψ〉1 if and only if the following suitability relation
is satisfied:

ρ2 ≡ Tr1 |a〉12〈a|12 = w(ρ̃B2 )−1P2 (33)

whereρ̃B2 is the restriction ofρB2 to its rangeR(P2). This implies

w = {Tr[(ρ̃B2 )
−1]}−1. (34)

Proof. It is useful to expand|a〉12 in the ON subbasis{|i〉2 : ∀i} spanningS2 that is a
characteristic basis of̃ρB2 :

|a〉12 =
∑
i

(rai )
1/2|i〉1|i〉2. (35)

The subbasis{|i〉1 : ∀i} in S1 (|a〉12 ∈ S1 ⊗ S2, cf (24)) a priori need not be orthogonal.
We require the vectors|i〉1 to be normalized, i.e.∀i : (rai )

1/2 is, by definition, the norm of
the generalized expansion coefficient(rai )

1/2|i〉1 in (35) (cf lemma 2mutatis mutandis).
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Replacing expansions (35) and 31a) in the relevant distant-preparation relation (32), one
obtains: ∑

i

∑
i ′

[(rai )
1/2r

1/2
i ′ 〈i|1|ψ〉1〈i|2|i ′〉2]|i ′〉3 = w1/2|ψ〉′3.

Since〈i|2|i ′〉2 = δi,i , one ends up with∑
i

(rai )
1/2r

1/2
i 〈i|1|ψ〉1|i〉3 = w1/2|ψ〉′3

or equivalently,

∀i : w−1/2(ra1 )
1/2r

1/2
i 〈i|1|ψ〉1 = 〈i|3|ψ〉′3. (36)

Since all steps that led from (32)–(36), made with the help of the expansions (31a) and
(35), can be performed backwards, (36) is an equivalent form of (32). We must clarify
under which conditions can (36) be viewed as a unitary isomorphismU31 mappingS1 onto
S′3.

To prove necessityof the claimed condition (33), we assume that (36) determines a
unitary isomorphismU31 (U31|ψ〉1 = |ψ〉′3) mappingS1 ontoS′3.

Making |ψ〉1 run over the ON basis vectors{|ī〉1 ≡ U−1
31 |i〉3 : ∀i}, and taking into

account the fact thatw is one and the same by this (cf lemma 8), (36) implies

w−1/2(rai )
1/2r

1/2
i 〈i|1ī ′〉1 = δi,i ′ .

This makes the vectors{|i〉1 : ∀i}, which were assumed to be normalized, also orthogonal
on account of the orthonormality of the basis{|ī〉1 : ∀i}, and it makes (35) a biorthogonal
expansion. Besides, the last relation also implies

∀i : rai = wr−1
i .

Since allrai are seen to be positive, (35) is a Schmidt biorthogonal expansion (cf definition 4).
Then, in view of the spectral form

ρ2 =
∑
i

rai |i〉1〈i|1

which we can now read from (35) (cf corollary 8mutatis mutandis), and taking into account
(31b), the claimed relation (33) follows.

To provesufficiencyof the claimed condition (33), we point out that, due to the stated
equivalence of (36) and (32),w in the two relations is one and the same, and hence it is the
probability of distant preparation. Now, (33) implies (34), and hence the independence of
w from the choice of|ψ〉1 in S1. According to lemma 8, this is sufficient for the linearity
(and hence the unitarity) ofU31 determined by (32). �

Now we are prepared to state the central result of this study.

Theorem 3.Let |9̄〉23 be a given (finitely or infinitely) entangled bridge state vector. Let
the linear manifoldS1 (⊆ H1) be arbitrarily chosen but finitely dimensional, its number
of dimensions not exceeding that ofR(ρ̄B3 ). Then and only then there exist atomic state
vectors|ā〉12 such that the first step of statistical teleportation is possible.

A necessary and sufficient condition for the mentioned atomic state vector is that it
defines a relevant atom state vector (i.e. thatd > 0 in (24)), and that the latter, if written
as a Schmidt biorthogonal expansion (35), satisfies:

(i) {|i〉2 : ∀i} is an arbitrary characteristic ON basis ofρB2 in S2;
(ii) ∀i : rai = wr−1

i (cf (31a)–(31c)), and
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(iii) w, the probability of statistical teleportation, is given by (34), i.e. by

w = {Tr[(ρ̃B2 )
−1]}−1.

Proof. Proof follows immediately from lemma 9, because, in view of the spectral forms
of ρB2 andρ2, (i) in conjunction with (ii) is equivalent to (33). The subspaceS1 has to be
finitely dimensional, because, in the first step of teleportation,S1,S

′
3 andS2 were seen to

be equally dimensional (cf (6b) and (31a)), and for infinitely dimensionalS2 the inversion
in (33) would not be possible. SinceS′3 ⊆ R(ρ̄B3 ) (cf theorem 2 and remark 6), the number
of dimensions of the former must not exceed that of the latter. These properties are seen to
be also sufficient for (33), which, according to lemma 9, is sufficient for|ā〉12 to be atomic
if d > 0 in (24). �

Remark 8.Note that, while the spectrum{raj : ∀j} and the ON subbasis{|i〉2 : ∀i} in the
Schmidt biorthogonal expansion (35) are determined byρB2 , the ON subbasis{|i〉1 : ∀i} is
an (arbitrary) ON basis inS1. Also the irrelevant parts of the atomic state vector|ā〉12, i.e.

(P1⊗ P⊥2 )|ā〉12 (P⊥1 ⊗ P2)|ā >12 and (P⊥1 ⊗ P⊥2 )|ā〉12

(P⊥2 being the orthocomplementary projector ofP2 in H2 etc) are completely arbitrary
(cf (24)). This may prove useful in practice (which will hopefully be reached): it may help
to find tractable atomic state vectors|ā〉12.

Finally, the unitary isomorphismU3 (taking the subspaceS′3 onto S3 (≡ I31S1)),
responsible for the second step of teleportation, is implied (as it was stated) asU3 = I31◦U−1

31 .
One should note that the larger the subspaceS1 is, the more statistical teleportation can

be accomplished with one and the same|ā〉12 and one and the sameU3. Also the probability
w̄ is one and the same.

Finally, it is important to point out that the central result is immediately applicable to
deterministic teleportation. Namely, the probabilityw does not depend on the choice of the
atom state. (It is implied solely by the bridge state.) Hence, it is valid simultaneously for
all, what may be called, characteristic atomic state vectors of a deterministically teleporting
observable (cf (9)).

The operator relation (33) is thus the searched fornecessary and sufficient condition
also for the observable in deterministic teleportation.

6. Immediate consequences of the central theorem

Corollary 11. If one denotes byUBa and Ua the correlation operator of the relevant
bridge state vector|9〉23 and that of the relevant atom state vector|a〉12 respectively
(cf definition 5), then one has

Ua = (UBa )−1 ◦ U31 (37)

(see the commuting lower triangle on figure 2 below).

Proof. The suitability relation (33) of the atomic state vector implies that each characteristic
basis ofρB2 is also a characteristic basis ofρ2. Let {|i〉2 : ∀i} be a common characteristic
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Figure 2.

orthonormal subbasis ofρB2 andρ2 spanning their common rangeS2. Then, utilizing (33),
we can write down the Schmidt biorthogonal expansions as follows

|9〉23 =
N∑
i=1

r
1/2
i |i〉2⊗ [(UBa )|i〉2]3 (38)

|a〉12 =
N∑
i=1

w1/2r
−1/2
i [(Ua)−1|i〉2]1⊗ |i〉2 (39)

(cf (15a) and (15b) mutatis mutandis).
By the very definition ofU31 (and on account of proposition 2, stating that distant

preparation can be written in terms of the relevant state vectors), one has:

U31|ψ〉1 = |ψ〉′3 = w−1/2〈a|12(|ψ〉1|9〉23).

Substitution of|ψ〉1 ≡ [(U−1
a )|i〉2]1, of (38), and of (39) entails

∀i : U31[(U−1
a )|i〉2]1 = [(UBa )|i〉2]3.

On account of the commutativity of the triangle of unitary maps at issue (see figure 2), the
claimed relation (37) then clearly follows. �

Corollary 12. In view of (34) and (38), one can write

w = 1/
N∑
i=1

r−1
i (40)

whereN is the degree of entanglement of the relevant bridge state vector (cf definition 6
and (38)). It is always true that

w 6 1/N2 (41)

and the maximal valuew = 1/N2 is reached if and only if the relevant bridge state vector
is maximally entangled, i.e. ∀i : ri = 1/N (cf definition 7).

Proof. Relation (40) is the explicit form of (34). It is the harmonic mean value of the
characteristic valuesri (of ρ̃B2 ) divided byN . Since the maximal value of the harmonic
mean is the arithmetic mean, one obtains (41). The last claim follows from the fact that the
maximal value of the harmonic mean, at fixed value of the arithmetic mean, is achieved if
and only if the characteristic values are equal to each other. Since

∑
i ri = 1, we are then

dealing with a maximally entangled bridge state vector as claimed. �



4420 V Bŏzin et al

Figure 3.

Thus, from the statistical point of view it is most favourable to use a maximally entangled
relevant bridge state vector for statistical teleportation because it gives the largest probability
of teleportation.

Corollary 13. Let |ā〉12 be an atomic state vector in(H1 ⊗ H2), i.e. a state vector such
that (24) withd > 0 and (33) are valid. Let, further,Ua be the correlation operator of the
implied atom state vector|a〉12 mapping the rangeR(ρ1), whereρ1 ≡ Tr2 |a〉12〈a|12, onto
R(ρ2) (cf (39)). Then,the relevant partU3 of the operationŪ3, i.e. the map obtained by
restricting the domain of the latter toS′3 (≡ R(ρB3 )), is a unitary isomorphism mappingS′3
ontoS3 (≡ I31R(ρ1)). The isomorphismU3 is uniquely determined by the two commuting
triangles on figure 2 as follows

U3 = I31 ◦ U−1
31 U31 = UBa ◦ Ua. (42)

Proof. Obvious in view of the facts that the central theorem covers all possible atomic
state vectors|ā〉12 for fixed S1, and that the two basic ingredient entitiesρ2 andUa of the
relevant atom state vector|a〉12 are decoupled (cf corollary 9). Note that figure 2, on which
the mutual connections between the maps are displayed, is completely independent ofρB2 ,
which determinesρ2. �

Corollary 14. Let |ā(0)〉12 be a fixed atomic state vector, and letU (0)a be the correlation
operator of the implied relevant atom state vector|a(0)〉12 (cf definition 5). An arbitrary
unitary operatorU1 in S1 gives another relevant atom state vector|a〉12 by specifying its
correlation operatorUa as follows

U−1
a ≡ U1 ◦ (U (0)a )−1 (43)

(see figure 3) andρ2 is the same both for|a(0)〉12 and for |a〉12, cf (33)). (The irrelevant
parts of|ā〉12, are, of course, arbitrary.) Every|a〉12 can be obtained in this way.

Finally, the atom-generating unitary operatorsU1 and the operationsU3 determine each
other along the peripheral route on the commuting figure 3:

U3 = I31 ◦ U1 ◦ (U (0)a )−1 ◦ (UBa )−1 (44a)

U1 = I−1
31 ◦ U3 ◦ UBa ◦ U (0)a . (44b)

Proof. Obvious. �

Corollary 15. If |a(0)〉12 is a given relevant atom state vector, andU1 is an arbitrary unitary
operator inS1, then|a〉12 ≡ (U1⊗ I2)|a(0)〉12 is another relevant atom state vector, actually,
the one described in the preceding corollary.
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Proof. Follows immediately from (43) when one writes one relevant atom state vector in
its Schmidt biorthogonal expansion, and one derives that of the other:

|a〉12 =
∑
i

w1/2r
−1/2
i (U−1

a |i〉2)1|i〉2 =
∑
i

w1/2r
−1/2
i {(U1 ◦ (U (0)a )−1)|i〉2}1|i〉2

= (U1⊗ I2)|a(0)〉12.

�

7. Deterministic teleportation

We now return to the important concept of deterministic teleportation invented by Bennet
et al (1993) (introduced in section 3). A complete observableA12 for subsystem(1+ 2) is
given such that all its characteristic vectors are atomic state vectors (see relation (9)):

A12 =
N∑
m=1

am|ā(m)〉12〈ā(m)|12 (45a)

with m 6= m′ ⇒ am 6= am′ , and

〈ā(m)|12|ā(m′)〉12 = δm,m′ . (45b)

SinceA12 is a complete observable in(H1⊗H2) (Hi being the state space of subsystemi,
i = 1, 2), the set{|ā(m)〉12 : m = 1, 2, . . . ,M} must span this space. Hence,M must equal
the product of the numbers of dimensions ofH1 and ofH2 (finite or infinite).

Theorem 4. Deterministic teleportationwith an entangled bridge state vector|9̄〉23 and with
a finitely-dimensional subspaceS1 is possibleonly if the following condition is satisfied:

M∑
m=1

dm = w−1c−1 (46)

wherew is given by (34),c is given by (22), anddm is determined by

d1/2
m |a(m)〉12 ≡ (P1⊗ P2)|ā(m)〉12 m = 1, 2, . . . ,M (47)

(cf (24)).

Proof. One has deterministic teleportation if and only if the observableA12 given in
spectral form by (45a) is complete and each of its characteristic vectors is an atomic
state vector. Then one of the atomic events(|ā(m)〉12〈ā(m)|12⊗ I3) necessarily does occur
in the measurement of the observable in the state|ψ〉1|9̄〉23. Hence, the corresponding
probabilitiesw̄m (= wcdm, cf (26)) of the mentioned events must add up into 1. This can
obviously be written as (46). �

Remark 9.If there is no redundancy in the characteristic atomic state vectors|ā(m)〉12 of
a deterministically teleporting observableA12 (cf (45a), (45b)), i.e. if |ā(m)〉12 = |a(m)〉12,
m = 1, 2, . . . ,M (cf (24)), then, on the one hand, each of the vectors belongs to(S1⊗S2),
and on the other hand,A12 must be complete in(H1 ⊗ H2), or, equivalently the basis
{|a(m)〉12 : m = 1, 2, . . . ,M} must span the entirety of this space. Hence, necessarily
S1 = H1, andS2 = H2, andHk, k = 1, 2, must befinite dimensional. They must also be
equally dimensionalbecause the number of dimensions of both must equal that ofS′3 (on
account ofU31 and the definition ofS2).
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If there is redundancy, then, it appears, there is the possibility of using any entangled
bridge state vector|9̄〉23, even an infinitely entangled one, for deterministic teleportation,
as well as an infinitely dimensional state spaceH1. Namely, however large the RHS of
(46), the numerous smalldm might add up into it.

Theorem 5.In the special case whenS1 = H1 andS2 = H2, deterministic teleportation is
possible if and only if there is no redundancy either in the bridge state vector or in any
characteristic state vector, and if the former ismaximally entangled.

Proof. Let N be the degree of entanglement of|9〉23 (and, of course, the number of
dimensions ofSi , i = 1, 2). Relation (46) reads

∑M
m=1wdmc = 1, andM = N2. Since

w 6 1/N2 c 6 1 dm 6 1 m = 1, 2, . . . , N2

(cf (41), (22), and (47)), relation (46) can be satisfied if and only if each term has its
maximal value(1/N2), i.e.

w = 1/N2 c = dm = 1 m = 1, 2, . . . , N2

and the first of these conditions means maximal entanglement (cf corollary 12). �

Corollary 16. Let againS1 = H1,S2 = H2. Let, further, {|i〉2 : i = 1, 2, . . . , N} be a
characteristic orthonormal basis ofρ̃B2 (= ρB2 , cf (23)). It is a characteristic orthonormal
basis also ofρ2 of each|ā(m)〉12 on account of (33). Hence, expansion of each|ā(m)〉12 in
this basis is a Schmidt biorthogonal expansion (cf lemma 4 and definition 4):

|ā(m)〉12 = |a(m)〉12 = N−1/2
N∑
i=1

|i(m)〉1|i〉2 m = 1, 2, . . . , N2 (48)

(cf theorem 5). Theorthogonality (45b) is equivalent to theN(N − 1)/2 conditions

∀(m < m′) :
N∑
i=1

〈i(m)|1|i(m′)〉1 = 0. (49)

Proof. Immediately obtained when one replaces (48) in (45b). �

Corollary 17. If one has one observableA12 suitable for deterministic teleportation, any
unitary operatorU1 andH1 generates another:

A′12 ≡ (U1⊗ I2)A12(U†1 ⊗ I2).

Proof. This is an immediate consequence of (48) and (49). �

Corollary 18. If, under the conditions of theorem 5, one fixes one of the characteristic atom
state vectors, e.g.|a(m0)〉12, and one wants to generate the rest of the(N2−1) characteristic
atom state vectors of a deterministically teleporting observableA12 out of it using unitary
operatorsU (m)1 (cf corollary 5), thenthe orthogonality relations(49) take on theequivalent
form

Tr(U (m)1 )†U (m
′)

1 = 0 m 6= m′ m,m′ = 1, 2, . . . , N2. (50)

SinceU (m0)

1 = I1, (50) is seen to imply

TrU (m)1 = 0 ∀m,m 6= m0. (51)



Quantum teleportation 4423

Proof. Follows immediately from (49). �

Evidently, in our search for suitable pairs

{(|a(m)〉12,U (m)3 ),m = 1, 2, . . . , N2}
for deterministic teleportation one can choose the unitary operatorsU (m)3 as thestarting
entities and evaluate(U (m)a ) from (42). Then, under the conditions of theorem 5, the
orthogonality relations (49) can be further transformed. Since, moving on the periphery of
figure 3, one can write

U (m)3 = I31 ◦ U (m)1 ◦ (U (m0)
a )−1 ◦ (UBa )−1 m = 1, 2, . . . , N2 (52)

and since all the factors are unitary or antiunitary isomorphisms, which implies that adjoining
is the same as inversion, one obtains

[(U (m)3 )†U (m
′)

3 ] = (UBa ◦ U (m0)
a ) ◦ [(U (m)1 )†U (m

′)
1 ] ◦ (UBa ◦ U (m0)

a )−1

m 6= m′ m,m′ = 1, 2, . . . , N2.
(53)

Thus, the square-bracketed operators are unitary transforms of each other, hence, their traces
are equal. This proves the following result.

Corollary 19. Under the conditions of theorem 5, the orthogonality relations (45b) are
equivalent to

Tr[(U (m)3 )†U (m
′)

3 ] = 0 m 6= m′ m,m′ = 1, 2, . . . , N2. (54)

Remark 10.If one solves the orthogonality relations (54), then one derives the ON basis
{|i(m)〉1 : ∀i} that gives|a(m)〉12 via (48) utilizing (52) solved forU (m)1 :

∀m, ∀i: |i(m)〉1 ≡ [(I−1
31 ) ◦ (U (m)3 ) ◦ (UBa ) ◦ (U (m0)

a )]|i(m0)◦〉1. (55)

Remark 11.Let us, for a moment, consider statistical teleportation by itself (not as a
constituent of deterministic teleportation). Then, one must realize that if the event
determined by the atomic state vector does not occur in its measurement, the state of
subsystem 1 changes, and the same individual sample of subsystem 1 is not available for a
second attempt. If the measurement is ideal (cf Messiah 1961, Lüders 1951), one can work
out this change of state. (But it is not worth doing.) If the measurement is not ideal (as
most realistic cases are), then even in principle one does not know the change of state.

Remark 12.It is important to bear in mind that for distant preparation (and for teleportation
obtained after the operationU3 is applied) the measurement of the deterministically
teleporting observableneed not be an ideal one(cf section 6(B) in Herbut and Vujic̆ić
1976).

Remark 13.As an example of derivation of deterministically teleporting observablesA12

under the conditions of theorem 5, we takeN = 2, and give a family of ON bases
{{|i(m)〉1 : i = 1, 2} : m = 1, 2, 3, 4} (which then, using (48) and satisfying (45b) via
(49), each define an observable (45a), where the corresponding operationsU (m)3 are given
by (52)):

{|↑〉1, |↓〉1} {eiθ |↓〉1, e−iθ |↑〉1}.
{((1− s2)1/2|↑〉1+ iseiθ |↓〉1), (−ise−iθ |↑〉1− (1− s2)1/2|↓〉1)}
{(−is|↑〉1− (1− s2)1/2eiθ |↓〉1), ((1− s2)1/2e−iθ |↑〉1+ is|↓〉1)}

06 s < 1.

For θ = 0 ands = 0 we have the special case of Bell’s observable utilized by Bennett
et al (1993).

The general solution forN = 2 requires a more complicated presentation. Therefore
we omit it in this illustration.
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Figure 4.

8. Teleportation of proper mixtures

First, we generalizestatistical teleportationto general (mixed or pure)states. We shall
deal with state operators (statistical operators) instead of state vectors in this case.

One expects that generalizing the state vectors|ψ〉1, |ψ〉′3 (= U31|ψ〉1), and |ψ〉3
(= (U3◦U31)|ψ〉1 = I31|ψ〉1) to state operatorsρ1, ρ

′
3 andρ3 via the corresponding similarity

transformations

ρ ′3 (= U31ρ1U−1
31 ) ρ3 (= (U3 ◦ U31)ρ1(U3 ◦ U31)

−1 = I31ρ1I−1
31 )

one achieves statistical teleportation of the state operator.
We want to achieve figure 4.
One wonders what the counterpart of the restriction|ψ〉1 ∈ S1 for the state operator

ρ1 is. The answer to this question is important because all that was stated aboutρ1 above
cannot be expected to be valid in more generality than under the sought for restriction. We
shall say thatρ1 satisfying this restriction is ‘suitable’.

Definition 11.A state operatorρ1 will be calledsuitable if it satisfies one of the following
four equivalent conditions.

(i) (Viewingρ1 as one mixture.) There exists a decomposition ofρ1 into pure states,
ρ1 =

∑
k wk|ψk〉1〈ψk|1, such that∀k : |ψk〉1 ∈ S1.

(ii) (Algebraic characterization.) P1ρ1 = ρ1.
(iii) ( Geometric characterization.) The subspaceS1 is invariant forρ1 and the latter

reduces into zero in the orthocomplementS⊥1 .
(iv) (Viewing ρ1 as an arbitrary mixture of pure states.) For every decomposition

ρ1 =
∑

k wk|ψk〉1〈ψk|1 of ρ1 into pure states one has∀k : |ψk〉1 ∈ S1.
It will be proved in appendix A that the four restrictions onρ1 displayed in definition 11

are equivalent.
A plausibility argument for statistical teleportation of state operators goes as follows.

Thinking of ρ1 as of a mixture of pure states, e.g.

ρ1 =
∑
k

wk|ψk〉1〈ψk|1

(∀k : wk > 0, 〈ψk|1|ψk〉1 = 1, and|ψk〉1 ∈ S1,
∑

k wk = 1), one imagines that an individual
first subsystem is necessarily in one of the states|ψk〉1, and it is thus teleported with the
probability w̄ (cf (26)) that does not depend either onk or wk (cf (34)). This uniformity of
w̄ with respect to the above decomposition suggests thatρ1 is teleported as a whole.

However, wheneverρ1 is a mixed state, the above decomposition is necessarily
nonunique and imaginingρ1 as an actual physical mixture of pure states is open to doubt
in quantum mechanics. Hence, it is desirable to have a rigorous argument that applies to
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statistical operators ascompact entities. This is the usual procedure in quantum mechanics,
and we proceed along these lines also for teleportation.

The first step, i.e.distant preparation, is crucial in statistical teleportation. To begin
with, we generalize the most important results of distant-preparation theory (see section 2)
to statistical operators. We return to the notation used in section 2.

Proposition 3.Let ρnd be a given general composite-system state operator (in(Hn ⊗Hd)),
and |b〉n a given nearby-subsystem state vector. Then ideal measurement of the event
(|b〉n〈b|n ⊗ Id) in the stateρnd , if the event does occur, brings about distant preparation of
the distant subsystem in the state

ρ ′d ≡ p−1 Trn ρnd(|b〉n〈b|n ⊗ Id) (56a)

wherep is the probability of occurrence

p ≡ Trnd ρnd(|b〉n〈b|n ⊗ Id) = 〈b|nρn|b〉n ρn ≡ Trd ρnd . (56b)

Proof. Ideal occurrence brings about a change of state given by the Lüders formula (L̈uders
1951, Messiah 1961):

ρnd → ρ ′nd ≡ p−1(|b〉n〈b|n ⊗ Id)ρnd(|b〉n〈b|n ⊗ Id).
One has

Trn[(En ⊗ Id)Bnd ] = Trn[Bnd(En ⊗ Id)]
whereEn is a projector inHn andBnd is an everywhere defined linear operator inHnd .
The equality can be seen to hold if the partial trace is evaluated in a characteristic basis of
En. Sinceρ ′d ≡ Trn ρ ′nd , the above commutation under the partial trace and the projector
idempotency lead to (56a). �

Theorem 6.Any direct measurement of an event(|b〉n〈b|n ⊗ Id) in the stateρnd results
in the distant preparation of the state operatorρ ′d given by (56a) as in the case of ideal
measurement (and, of course, the probabilityp given by (56b) is the same).

Proof. Obtainable by direct generalization of that of theorem 1, in particular, by replacing
〈χ |nd . . . |χ〉nd in (5) by (Trnd ρnd . . .). �

We now return to our investigation of teleportation.

Proposition 4.Let

ρ1 =
∑
k

wk|ψk〉1〈ψk|1 (57a)

be a given decomposition into pure states of a state operatorρ1 satisfying restriction
(i) in definition 11. Let, further,|ā〉12 be an atomic state vector in(H1 ⊗ H2). Let,
finally, a measurement of(|ā〉n〈ā|n ⊗ Id) in the three-subsystem composite-system state
(|ψk〉1 ⊗ |9̄〉23), if the event occurs, give by distant preparation the third-subsystem state
|ψk〉′3 for each value ofk. Then, the same measurement in the state(ρ1 ⊗ |9̄〉23〈9̄|23) in
case of occurrence, gives by distant preparation the stateρ ′3 satisfying

ρ ′3 =
∑
k

wk|ψk〉′3〈ψk|′3. (57b)
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Proof. According to theorem 6, one has

ρ ′3 = (w̄)−1 Tr12(ρ1⊗ |9̄〉23〈9̄|23)(|ā〉12〈ā|12⊗ I3).

Substitution of decomposition (57a) gives further

ρ ′3 =
∑
k

wk(w̄)
−1〈ā|12|ψk〉1|9̄〉23〈ψk|1〈9̄|23|ā〉12 =

∑
k

wk|ψk〉′3〈ψk|′3

(cf theorem 1 and relation (4), as well as proposition 2). �

Theorem 7.If, under the assumptions of proposition 4,ρ ′3 is the state operator to whichρ1

gives rise by distant preparation, then one can write

ρ ′3 = U31ρ1U−1
31 . (58)

Proof. Follows immediately if one substitutes

∀k : |ψk〉′3 = U31|ψk〉1
in (57b) and one takes into account (57a). �

The two most important consequences are now obvious.

Corollary 20. Under the assumptions given in proposition 4, one has

ρ3 ≡ (U3 ◦ U31)ρ1(U3 ◦ U31)
−1 = I31ρ1I−1

31 . (59)

Corollary 21. If A12 is a complete observable defined in terms of atomic characteristic state
vectors throughout like the one given by (45a), (45b), then its measurement in the state
(ρ1⊗|9̄〉23〈9̄|23), whereρ1 is a suitable state operator (cf definition 11), necessarily results
in teleportation expressed by (59), whereU3 andU31 have to be replaced byU (m)3 andU (m)31

respectively,m being the index of the atomic event(|ā(m)12 〈ā|(m)12 ⊗ I3) that did occur for the
given individual system.

9. Teleportation of improper mixtures

We now assume that one more subsystem has entered the scene. We denote it by zero. Let
ρ01 be an arbitrary state operator of the composite system(0+ 1). The state operatorρ1

(≡ Tr0 ρ01) of subsystem 1 describes now animproper mixture(cf D’Espagnat 1976) unless
ρ01 is uncorrelated (i.e. unlessρ01 = ρ0⊗ ρ1, whereρ0 ≡ Tr1 ρ01).

The correlations in a correlated state operatorρ01 are given in terms of the totality
of conditional state operators{ρ0(F1): all F1} acting in H0, where an arbitrary event
(projector)F1 for subsystem 1 is the condition. The stateρ0(F1) of subsystem 0 comes
about when(I0⊗F1) (I0 being the identity operator inH0) is measured in the stateρ01 and
the event occurs (for more details see section 2 in Herbut 1986).

Theorem 8.Let

|χ〉01 =
∑
i

r
1/2
i |bi〉0|ci〉1 (60)

be a state vector in(H0⊗H1) given in a Schmidt biorthogonal expansion (cf definition 4)
and such that the state operator of subsystem 1, i.e.ρ1 (≡ Tr0 |χ〉01〈χ |01), satisfies the
suitability restriction (cf definition 11). Let, further,|9̄〉23 be a given bridge state vector,
and let |ā〉12 be an atomic state vector. Finally, let the event(I0 ⊗ |ā〉12〈ā|12 ⊗ I3) be
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measured in the state|χ〉01|9̄〉23. Then, if the event occurs,distant preparation, i.e. the first
step of statistical teleportation, brings about a state vector|χ〉′03 so that

|χ〉′03 = (I0⊗ U31)|χ〉01 (61)

whereU31 is the unitary isomorphism mappingS1 ontoS′3 that is determined by|ā〉12 and
|9̄〉23 (cf (6a) and (6b)).

Proof. Utilizing the basic distant-preparation formula (4) (cf also Theorem 1), and taking
subsystem(1+ 2) as the nearby and(0+ 3) as the distant subsystem, one has

|χ〉′03 = (w̄)−1/2〈ā|12

(∑
i

r
1/2
i |bi〉0|ci〉1

)
|9̄〉23

=
∑
i

r
1/2
i |bi〉0[(w̄)−1/2〈ā|12|ci〉1)|9̄〉23] =

∑
i

r
1/2
i |bi〉0(U31|ci〉1)

= (I0⊗ U31)

(∑
i

r
1/2
i |bi〉0|ci〉1

)
= (I0⊗ U31)|χ〉01.

Use has been made of (6a) and (6b) and of the fact thatw̄ does not depend on the state
vector fromS1. �

Corollary 22. Under the assumptions of theorem 8,statistical teleportationgives

|χ〉03 = (I0⊗ U3) ◦ (I0⊗ U31)|χ〉01 = (I0⊗ I31)|χ〉01. (62)

Proof. Obvious. �

Corollary 23. The correlations in a teleported state vector|χ〉01 arepreservedin the sense
that we have the Schmidt biorthogonal expansions

|χ〉′03 = (I0⊗ U31)|χ〉01 =
∑
i

r
1/2
i |bi〉0(U31|ci〉1)3 (63)

|χ〉03 = (I0⊗ I31)|χ〉01 =
∑
i

r
1/2
i |bi〉0(I31|ci〉1)3 (64)

essentially unchanged with respect to (60), i.e. unchanged inH0.

Proof. Follows immediately from (61) and (62). �

Theorem 9.Let |9̄〉23 be a given bridge state vector, let|ā〉12 be an atomic state vector,
and let the event(I0⊗ |ā〉12〈ā|12⊗ I3) be measured in the state given by the state operator
ρ01 ⊗ (|9̄〉23〈9̄|23), whereρ01 is an arbitrary state operator in(H0 ⊗ H1), but such that
the state operator of subsystem 1, i.e.ρ1 (≡ Tr0 ρ01), satisfies the suitability restriction
(definition 11). Then, in case of occurrence, the distantly prepared state operatorρ ′03 is
obtained fromρ01 as follows

ρ ′03 = (I0⊗ U31)ρ01(I0⊗ U31)
−1 (65)

whereU31 is the unitary isomorphism mappingS1 ontoS′3 that is determined by|ā〉12 and
|9̄〉23 (cf (6a) and (6b)).
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Proof. Taking the subsystem(1+ 2) as the nearby and(0+ 3) as the distant subsystem,
according to theorem 6 distant preparation gives

ρ ′03 = (w̄)−1 Tr12{[ρ01⊗ (|9̄〉23〈9̄|23)][I0⊗ |ā〉12〈ā|12⊗ I3]}
w̄ = Tr0123{[ρ01⊗ (|9̄〉23〈9̄|23)][I0⊗ |ā〉12〈ā|12⊗ I3]}. (66)

Let

ρ01 =
∑
k

wk|χk〉01〈χk|01 (67)

be a decomposition ofρ01 into pure states. Replacing this in (66), using the fact thatw̄

does not depend on|χk〉01, and utilizing (61), we derive

ρ ′03 =
∑
k

wk(I0⊗ U31)|χk〉01〈χk|01(I0⊗ U31)
−1

which, on account of (67), implies (65). �

Corollary 24. Under the assumptions of theorem 9, the statistically teleported state operator
can be written

ρ03 = [(I0⊗ U3) ◦ (I0⊗ U31)]ρ01[(I0⊗ U3) ◦ (I0⊗ U31)]
−1 = (I0⊗ I31)ρ01(I0⊗ I31)

−1.

(68)

Proof. Obvious. �

Theorem 10.Let F1 be an arbitrary subprojector ofP1, i.e. such thatF1P1 = F1 is valid (in
view of P1, cf definition 11). Thenthe conditional state operatorin H0, i.e.

ρ0(F1) ≡ p−1 Tr1[ρ01(I0⊗ F1)] (69a)

where

p ≡ Tr01[ρ01(I0⊗ F1)] (69b)

is preservedin the sense that

ρ0(F1) = ρ0(U31F1U−1
31 ) (70a)

= ρ0(I31F1I−1
31 ). (70b)

Proof. Denoting byp′ the probability that [I0 ⊗ (U31F1U−1
31 )] occurs in the stateρ ′03′ and

utilizing (65), one has

ρ0(U31F1U−1
31 ) ≡ (p′)−1Tr3{ρ ′03[I0⊗ (U31F1U−1

31 )]}
= (p′)−1 Tr3{[(I0⊗ U31)ρ01(I0⊗ U31)

−1][(I0⊗ U31)(I0⊗ F1)(I0⊗ U31)
−1]}

= (p′)−1 Tr3[(I0⊗ U31)ρ01(I0⊗ F1)(I0⊗ U31)
−1] = (p′)−1 Tr1[ρ01(I0⊗ F1)].

Using (65) again, one obtains

p′ ≡ Tr03{ρ ′03[I0⊗ (U31F1U−1
31 )]}

= Tr03{(I0⊗ U31)ρ01(I0⊗ U−1
31 )[(I0⊗ U31)(I0⊗ F1)(I0⊗ U31)

−1]}
= Tr03{(I0⊗ U31)ρ01(I0⊗ F1)(I0⊗ U31)

−1]} = Tr01[ρ01(I0⊗ F1)] = p.
This establishes the validity of (70a). The proof of (70b) is analogous using (68) instead
of (65). �
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Corollary 25. If an observableA12 is suitable for deterministic teleportation, i.e. if it is
complete and all its characteristic vectors are atomic state vectors, then all the results of
this section are valid for deterministic teleportation via measurement ofA12.

Proof. Follows from the fact that, whatever the result in the measurement ofA12, statistical
teleportation takes place. �

10. Concluding results and discussion

10.1. Why linearity or, equivalently, unitarity?

Assuming linearity ofU31 (distant preparation), as we did in our derivation of the central
theorem, and taking into account the fact thatU31 preserves the norm, one concludes that it is
unitary. Besides, sinceU3 = I31◦U−1

31 (cf figure 2), and sinceI31 is a unitary isomorphism,
alsoU3 is unitary.

One wonders if this is necessary. It might be conceivable thatU31 and U3 violate
linearity, but in way that cancels out in consecutive application (like e.g. in case of
antiunitary operators). We show now that under a few assumptions that we consider essential
for statistical teleportation,U3 andU31 must be unitary.

Our assumptionsare as follows.
(i) There exists a physical system, we call it (the distant) ‘laboratory’, and denote it

by ‘L’, such that the composite system(3+ L) is dynamically closed during teleportation.
Hence, the evolution of the system(3+L) during the second step of teleportation is governed
by a unitary operatorU3L.

(ii) The state of the laboratory at the moment when the first step, i.e. distant preparation,
is completed, is described by one and the same state vector|9〉′L (or state operatorρ ′L)
independently of the distantly prepared state vector|ψ〉′3 (≡ U31|ψ〉1, |ψ〉1 ∈ S1).

(iii) Besides the initial state vector|ψ〉′3|9〉′L for the second step of teleportation also
the final state vector|ψ〉3|9〉L has to be uncorrelated for each|ψ〉′3 (∈ S′3 ≡ U31S1).

(iv) Both U31 and U3 have to be bijective (because so is the unitary isomorphism
I31 = U3 ◦ U31).

(v) If |ψ〉′3, |ψ̄〉′3 ∈ S′3, and 〈ψ |′3|ψ̄〉′3 = 0, then the teleported state vectors cannot be
collinear, i.e.|ψ〉3 6= eiλ|ψ̄〉3, λ ∈ R.

Violation of (v) would also violate the requirement that teleportation take distinct pure
states into distinct pure states, or else, distant preparation would have to take two state
vectors |ψ〉1, |ψ̄〉1 ∈ S1 representing the same pure state(|ψ̄〉1 = eiω|ψ〉1, ω ∈ R) into
orthogonal state vectors|ψ〉′3, |ψ̄〉′3 ∈ S3. This is not possible, because it is obvious from
the distant-preparation formula

|ψ〉′3 ≡ (w̄)−1/2〈ā|12|ψ〉1|ψ̄〉23

(cf (6a)) that one has necessarily|ψ̄〉′3 = eiω|ψ〉′3, ω ∈ R, in our case.
The unitarity ofU3L, in conjunction with assumptions (ii)–(iv), implies that one can fix

a state vector|9〉L of the ‘laboratory’ that is independent of|ψ〉′3(∈ S′3), and define an
operatorU3 mappingS′3 ontoS3 that is almost-linear. This is proved in appendix B.

Further, on account of the almost-linearity of the operatorU3, so is U−1
3 , and U31

(= U−1
3 ◦ I31). This almost-linearity ofU31 is proved in appendix C.

The operatorU31 turns out to be ‘linear with respect to’ a fixed set of vectors. This is
proved in appendix D. This is sufficient for it to be linear. This is proved in appendix E.



4430 V Bŏzin et al

SinceU31 takes state vectors into state vectors and it is linear, it is unitary; and so is
U3 (= I31 ◦ U−1

31 ).
Finally, it is hard to imagine a macroscopic system like the one we call the (distant)

‘laboratory’ in a pure state because practically it is almost impossible to bring a system of
great complexity into such a state. Hence, it is desirable to assume that the laboratory is in
a mixed state. We generalize our proof to the case when the state vectors|9〉′L and |9〉L
are replaced by state operatorsρ ′L andρL in appendix F. (In the proof we restrain from the
dubious physical assumption that the individual laboratory must be in some unknown pure
state.)

10.2. Is there any intermediary case between statistical and deterministic teleportation?

One may have an observableB12 that has some nondegenerate characteristic values with
atomic state vectors as the corresponding characteristic vectors (teleporting results), but
that also has degenerate or nondegenerate not teleporting characteristic values. Then, after
measuring this observable, if one obtains a teleporting result, one ‘phones’ the distant
laboratory and one informs it which result it is. There one applies the corresponding
operation and the (statistical) teleportation is achieved (in a subensemble).

This is, actually, a more intricate form of statistical teleportation.

10.3. How complete is our discussion on statistical and deterministic teleportation?

To end our investigation in a self-critical way, let us sum up what has been done emphasizing
what has to be done in further research.

Statistical teleportation has been treated in this work in a rather complete fashion. The
general form of an atomic state vector|ā〉12 has been found via (33) and (34), and the set of
all solutions in relevant atom state vectors|a〉12 has been classified in the following three
ways.

(i) Classification in two steps. In the first step we consider all atom state vectors
|a〉12 determining one and the same intermediary spaceS′3 (cf (6a,b)), which then, in
turn, determinesS2 (cf definition 9), and, in the second step through arbitrary ON bases
{|i〉1 : i = 1, 2, . . . , N} in S1 in the Schmidt biorthogonal expansion of|a〉12:

|a〉12 =
∑
i

w1/2r
−1/2
i |i〉1|i2〉

where the ON basis{|i〉2 : i = 1, 2, . . . , N} spanningS2 is an arbitrary fixed characteristic
subbasis ofρB2 (spanning its range).

(ii) The first step is the same as in (i), and in the second classification takes place
through arbitrary inverse correlation operatorsU−1

a (cf (15b)):

|a〉12 =
N∑
i=1

w1/2r
−1/2
i [(Ua)−1|i〉2]1⊗ |i〉2.

(iii) After the first step as in (i), we have classification through arbitrary unitary operators
U1 andS1:

|a〉12 = (U1⊗ I2)|a(0)〉12

where|a(0)〉12 is a fixed atom state vector (cf corollary 15).
What we have not done in this study is a clarification which spacesS′3 (⊆ R[(ρ̄B3 )]

1/2)

do correspond to some atom state vectors|a〉12 and which do not. Then, the ‘good’S′3
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serve in a precise way as the first step of classification, and (takingS′3 as the third input
entity) the above classifications are complete.

For deterministic teleportation we have obtained necessary and sufficient conditions,
but without a general solution. It is not clear whether, for an arbitrary given entangled
bridge state vector|9̄〉23, and for a given finite-dimensional subspaceS1 (⊆ H1) there does
necessarily exist a deterministically teleporting observableA12. If there exists one, it is not
clear how one can classifyall such observablesA12.
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Appendix A

In connection with definition 11 (on suitability of a state operator), we prove now:

Lemma A.1.Let S1 (⊆ H1) be a subspace, and let the projectorP1 projectH1 onto it. The
following four properties of a state operatorρ1 are equivalent to each other.

(i) There exists a decomposition ofρ1 into pure states,ρ1 =
∑

k wk|ψk〉1〈ψk|1, such
that∀k : |ψk〉1 ∈ S1.

(ii) P1ρ1 = ρ1.
(iii) The subspaceS1 is invariant for ρ1 and the latter reduces into zero in its

orthocomplementS⊥1 .
(iv) For every decomposition ofρ1 into pure states, each state vector obtained in the

decomposition (cf (i)) belongs toS1.

Proof. The relation|ψk〉1 ∈ S1 is equivalent toP1|ψk〉1 = |ψk〉1. Hence, (i) obviously
implies (ii). Adjoining the latter, we see thatP1 and ρ1 commute. Hence,S1 and S⊥1
are invariant forρ1. If |φ〉1 ∈ S⊥1 , then, also(ρ1|φ〉1) ∈ S⊥1 . On the other hand, as a
consequence of (ii),P1(ρ1|φ〉1) = (ρ1|φ〉1). SinceS⊥1 = (R(P1))

⊥, the last two relations
are possible only if(ρ1|φ〉1) = 0. Thus, (ii) implies (iii).

We assume that (iii) is valid, and we take an orthonormal subbasis{|φj 〉1 : ∀j} spanning
S⊥1 . Let ρ1 =

∑
k wk|ψk〉1〈ψk|1 be an arbitrary decomposition ofρ1 into pure states. Then,

∀j : 0= 〈φj |ρ1|φj 〉1 =
∑
k

wk〈φj |1|ψk〉1〈ψk|1|φj 〉1.

Hence,∀j, ∀k : 〈φj |ψk〉1 = 0, and this implies that∀k : |ψk〉1 ∈ S1. Thus, (iii) implies (iv).
Finally, (i) is a consequence of (iv) because there always exists the spectral decomposition
of ρ1 into characteristic vectors (andwk are then the corresponding characteristic values).�

Appendix B

Lemma B.1.One can fix a state vector|9〉L of the ‘laboratory’ that is independent of|ψ〉′3
(∈ S′3), and such that

∀|ψ〉′3 ∈ S′3: U3L(|ψ〉′3⊗ |9〉′L) ≡ (U3|ψ〉′3)⊗ |ψ〉L
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whereU3 is almost-linear in the sense that for a certain choice of an ON basis{|k〉′3 : ∀k}
spanningS′3 one has

|ψ〉′3 =
∑
k

αk|k〉′3⇒ U3|ψ〉′3 =
∑
k

αke
iλk (U3|k〉′3) (B.1)

(λk ∈ R, and they depend on the corresponding|k〉′3, but not on|ψ〉′3).
Before we prove lemma B.1, we insert an auxiliary result.

Lemma B.2.If |ψ〉′3, |ψ̄〉′3 ∈ S′3, and |ψ〉′3, |ψ̄〉′3 are state vectors orthogonal to each other,
then |9〉L = eiλ|9̄〉L, λ ∈ R, whereU3L(|ψ〉′3|9〉′3) = |ψ〉3|9〉L and U3L(|ψ̄〉3|9〉′3) =
|ψ̄〉3|9̄〉L.

Proof. Since the state vectors|ψ〉′3, |ψ̄〉′3 are orthogonal, so are|ψ〉′3|9〉′L and |ψ̄〉′3|9〉′L.
Then, on account of the unitarity ofU3L (cf assumption (i)), so are also|ψ〉3|9〉L(=
U3L(|ψ〉′3|9〉′L)) and |ψ̄〉3|9̄〉L(= U3L(|ψ̄〉′3|9〉′L)). Hence, either〈9|L|9̄〉L = 0 or
〈ψ |3|ψ̄〉3 = 0.

(a) Let 〈9|L|9̄〉L = 0. Then, due to assumptions (i) and (ii), one has:

U3L(|ψ〉′3|9〉′L + |ψ̄〉′3|9〉′L) = |ψ〉3|9〉L + |ψ̄〉3|9̄〉L. (B.2)

On the other hand, LHS= U3L[(|ψ〉′3+ |ψ̄〉′3)⊗ |9〉′L], and owing to assumption (iii)

LHS= p|x〉3|9x〉L (B.3)

wherep is the norm of the LHS. Relation (B.2) then givesp2 = 2. Further, (B.2) and (B.3)
imply

|9x〉L = 2−1/2(〈x|3|ψ〉3)|9〉L + (〈x|3|ψ̄〉3)|9̄〉L. (B.4)

Since in (B.4) all kets are vectors of norm 1 and by assumption (a)〈9|L|9̄〉L = 0,
necessarily

|〈x|3|ψ〉3| = |〈x|3|ψ̄〉3| = 1

or

eiµ|ψ〉3 = |x〉3 = eiω|ψ̄〉3 µ,ω ∈ R.

Owing to the assumption〈ψ |′3|ψ̄〉′3 = 0, and to assumption (v) in the text, this is not
possible.

(b) Let 〈ψ |3|ψ̄〉3 = 0. Since the two tensor factors play symmetrical roles, one proves
in analogy with (a) that

eiµ|9〉L = |9x〉L = eiω|9̄〉L µ, ω ∈ R.

�

Proof. Proof of lemma B.1. We assume that we have two arbitrary state vectors|ψ〉′3, |1〉′3 ∈
S′3, and we complete the second one into an orthonormal basis{|k〉′3 : k = 1, 2, . . . , N}
spanningS′3. Finally, let |ψ〉′3 =

∑
k αk|k〉′3. Then

U3L(|ψ〉′3|9〉′L) = |ψ〉3|9〉L
and, on the other hand, sinceU3L is linear, utilizing lemma B.2, one can write

LHS=
∑
k

αkU3L(|k〉′3|9〉′L) =
∑
k

αk|k〉3|9k〉L = (α1|1〉3+
N∑
k=2

αke
iλk |k〉3)|91〉L.
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Hence, we can define

|9〉L ≡ |91〉L |ψ〉3 ≡ U3|ψ〉′3 ≡
N∑
k=1

αke
iλk |k〉3

with

∀k: U3L(|k〉′3|9〉′L) = |k〉3|9〉L ≡ (U3|k〉′3)|9〉L
andλ1 ≡ 0. �

Appendix C

The inverseU−1
3 exists due to assumption (iv) (cf section 10.1). First, we prove that it is

almost-linear with respect to the set of vectors{|k〉3 ≡ U3|k〉′3 : ∀k} in the span of these
vectors. Utilizing (B.1), one obtains:

|ψ〉3 ≡
∑
k

βk|k〉3 =
∑
k

βk(U3|k〉′3) = U3

(∑
k

βke
−iλk |k〉′3

)
hence,

U−1
3 |ψ〉3 =

∑
k

βke
−iλk (U−1

3 |k〉3). (C.1)

Next, we prove thatU31 (= U−1
3 ◦I31) is almost-linear with respect to the set of vectors

{|k〉1 ≡ U−1
31 |k〉′3 : ∀k} in their span. The inverseU−1

31 exists on account of assumption (iv).
Let |ψ〉1 ≡

∑
k βk|k〉1. Then, owing to (C.1),

U31|ψ〉1 = (U−1
3 ◦ I31)|ψ〉1 = U−1

3

(∑
k

βk|k〉3
)
=
∑
k

βke
−iλk |k〉′3 =

∑
k

βke
−iλk (U31|k〉1).

(C.2)

�

Appendix D

By a variation of the necessity-part of the proof of lemma 8, we first prove thatU31 satisfying
(C.2) is linear with respect to the set of vectors{|k〉1 ≡ U−1

31 |k〉′3 : ∀k} i.e. that

|ψ〉1 ≡
∑
k

βk|k〉1⇒ U31|ψ〉1 =
∑
k

βk(U31|k〉1). (D.1)

Let the probabilities of distant preparation bew and{wk : ∀k} respectively, i.e.

〈a|12(|ψ〉1|9〉23) = w1/2|ψ〉′3 (D.2a)

∀k: 〈a|12(|k〉1|9〉23) = w1/2
k |k〉′3. (D.2b)

Relation (D.2a) can be rewritten in the form

〈a|12(|ψ〉1|9〉23) ≡ w1/2(U31|ψ〉1).
Replacing here|ψ〉1 in its expanded form (cf (D.1)), and utilizing (D.2b) and (C.2), one

obtains ∑
k

βkw
1/2
k |k〉′3 = w1/2

∑
k

βke
−iλk |k〉′3. (D.3)
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Since{|k〉′3 : ∀k} was taken to be an ON basis inS′3 (cf appendix B), (D.3) implies

∀k : βkw
1/2
k = βkw1/2e−iλk . (D.4)

Choosing|ψ〉1 so that all expansion coefficients are nonzero (cf (D.1)), (D.4) entails:
∀k : e−iλk = 1. Substituting this in (C.2), we derive the claim of (D.1).

Appendix E

Lemma E.1.If an operatorU31, mappingS1 into S′3, is ‘linear with respect to’ a set of
vectors{|k〉1 : ∀k}, then it is linear in the span of these vectors.

Proof. Let |ψ〉1 and{|ψj 〉1 : j = 1, 2, . . . , J } be in the span of the above vectors, i.e. let it
be possible to expand them (at least in one way):

|ψ〉1 =
∑
k

βk|k〉1 (E.1a)

∀j : |ψj 〉1 =
∑
k

γjk|k〉1. (E.1b)

Besides, let

|ψ〉1 =
J∑
j=1

αj |ψj 〉1. (E.2)

Substituting (E.1) in (E.2), we further have

|ψ〉1 =
J∑
j=1

∑
k

αjγjk|k〉1.

On account of the ‘linearity with respect to’ the set{|k〉1 : ∀k}, one has

U31|ψ〉1 =
J∑
j=1

∑
k

αjγjk(U31|k〉1). (E.3)

On the other hand, applyingU31 to (E.1b), one obtains

U31|ψj 〉1 =
∑
k

γjk(U31|k〉1).

Replacing this in (E.3), one arrives at

U31|ψ〉1 =
J∑
j=1

αj (U31|ψj 〉1).

In view of the arbitrariness of the linear combination (E.2), this proves linearity. �
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Appendix F

Lemma F.1.The final state operatorρL of the ‘laboratory’ is independent of the distantly-
prepared state vector|ψ〉′3.

Proof. The assumptions on the second step of statistical teleportation (see section 10.1)
allow us to write

|ψ〉3〈ψ |3⊗ ρL = U3L(|ψ〉′3〈ψ |′3⊗ ρ ′L)U†3L
whereρL might depend on|ψ〉′3. Let

ρ ′L =
∑
i

wi |9i〉′L〈9i |′L
be a spectral form ofρ ′L. Substitution of the latter relation in the former gives

|ψ〉3〈ψ |3⊗ ρL =
∑
i

wiU3L(|ψ〉′3〈ψ |′3⊗ |9i〉′L〈9i |′L)U†3L. (F.1)

Since for any value ofi, |9i〉′L is independent of|ψ〉′3 (because so isρ ′L by assumption
(ii) in the text), according to lemma B.1, we have

∀i : U3L(|ψ〉′3〈ψ |′3⊗ |9i〉′L〈9i |′L)U†3L = (|ψ〉3〈ψ |3⊗ |9i〉L〈9i |L)
and the final state|9i〉L〈9i |L is independent of|ψ〉′3.

Replacement of this relation in (F.1) results in

|ψ〉3〈ψ |3⊗ ρL =
∑
i

wi(|ψ〉3〈ψ |3⊗ |9i〉L〈9i |L) = |ψ〉3〈ψ |3⊗
(∑

i

wi |9i〉L〈9i |L
)
.

�
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